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Simple analytical relations for the bow wave generated by a ship in steady motion are
given. Specifically, simple expressions that define the height of a ship bow wave, the
distance between the ship stem and the crest of the bow wave, the rise of water at the
stem, and the bow wave profile, explicitly and without calculations, in terms of the ship
speed, draught, and waterline entrance angle, are given. Another result is a simple
criterion that predicts, also directly and without calculations, when a ship in steady
motion cannot generate a steady bow wave. This unsteady-flow criterion predicts
that a ship with a sufficiently fine waterline, specifically with waterline entrance angle
2αE smaller than approximately 25◦, may generate a steady bow wave at any speed.
However, a ship with a fuller waterline (25◦ < 2αE) can only generate a steady bow
wave if the ship speed is higher than a critical speed, defined in terms of αE by a simple
relation. No alternative criterion for predicting when a ship in steady motion does not
generate a steady bow wave appears to exist. A simple expression for the height of
an unsteady ship bow wave is also given. In spite of their remarkable simplicity, the
relations for ship bow waves obtained in the study (using only rudimentary physical
and mathematical considerations) are consistent with experimental measurements for
a number of hull forms having non-bulbous wedge-shaped bows with small flare
angle, and with the authors’ measurements and observations for a rectangular flat
plate towed at a yaw angle.

1. Introduction
Free-surface flow about a ship that advances at constant speed along a straight

course in calm water, i.e. a ship in steady motion, is considered. More precisely,
the bow wave – arguably the most conspicuous, complex and important feature of
free-surface flow about a ship – is considered. Several basic questions about ship bow
waves are examined. A first, obvious, set of questions is: What is the height of the
wave? What is the distance between the ship stem and the crest of the wave? What is
the rise of water at a ship stem? and What is the shape of the bow wave (bow wave
profile)?

A ship in steady motion is usually assumed, notably for numerical-calculation and
analytical purposes, to generate a steady bow wave; but this is not always true.
Common observations show that a ship in steady motion can generate an unsteady
bow wave. More generally, steady motion of a body through a fluid at rest does not
necessarily result in a steady flow; a classical example of unsteady flow generated
by steady motion of a body in a quiescent fluid is the von Kármán vortex sheet
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that can be observed (under proper conditions) behind a bluff body. Thus, another
basic question is: When does a ship in steady motion generate an unsteady bow
wave? A related question is: What is the height of an unsteady bow wave? No
analytical or empirical relations that answer these basic questions appear to exist, to
our knowledge.

A large number of well-established alternative methods have been developed to
compute steady free-surface flow about a ship that advances along a straight path, with
constant speed, through calm water of effectively infinite depth and lateral extent.
These methods include semi-analytical theories based on various approximations
(thin-ship, slender-ship, 2d+t theories), potential-flow panel (boundary integral
equation) methods that rely on the use of a Green function (elementary Rankine
source, or Havelock source that satisfies the radiation condition and the Michell
linearized free-surface boundary condition), and computational fluid dynamics (CFD)
methods that solve the Euler or RANS equations. These alternative calculation
methods are reported in a huge body of literature. Only a few illustrative studies are
noted here. The thin-ship theory has been widely used (e.g. Standing 1974; Noblesse
& Dagan 1976). A number of alternative slender-ship and 2d+t approximations
have been proposed and used (Tuck 1966; Ogilvie 1967; Chapman 1976; Noblesse
1983; Çalişal & Chan 1989; Fontaine, Faltinsen & Cointe 2000). Panel methods
based on Rankine and/or Havelock sources are also widely used (e.g. Brard 1972;
Dawson 1977; Jensen, Bertram & Söding 1989; Scragg & Talcott 1991; Raven
1999; Subramani, Beck & Scorpio 1999; Wyatt 2000). CFD methods are gaining
popularity (e.g. Farmer, Martinelli & Jameson 1993; Hino 1997; Yang & Löhner
2002; Bulgarelli 2005; Queutey & Visonneau 2007). Flows about flat plates that pierce
the free surface are considered in Chapman (1976), Maniar, Newman & Xu (1991) and
Xu (1991).

These alternative calculation methods provide valuable complementary tools, which
can be used to answer at least some of the basic questions raised above. In particular,
existing calculation methods can be used to predict a bow wave height and profile.
However, important features of free-surface flows about ships in steady motion,
notably unsteady and overturning bow waves, remain difficult to model numerically
and are not fully understood. In particular, we are not aware of calculation methods
that can predict whether a ship in steady motion generates an unsteady bow wave.
The complexities of overturning ship bow waves are well documented in the detailed
experimental investigations of Dong, Katz & Huang (1997) and Roth, Mascenik &
Katz (1999). These detailed experimental studies show that full numerical modelling
of overturning ship bow waves involves major difficulties; nevertheless, significant
progress has been reported (e.g. Tulin & Landrini 2001; Muscari & Di Mascio 2004;
Landrini 2006; Wilson, Carrica & Stern 2006).

The objective of the present study and the approach adopted to achieve this
objective differ markedly from the alternative objectives and methods of the literature,
briefly reviewed above, on free-surface flow about a ship in steady motion. The
objective of the study is to provide simple approximate analytical answers to the
basic questions noted earlier. The approach that is used toward this goal relies
solely on elementary fundamental considerations (dimensional analysis; asymptotic
behaviour in thin-ship limit, deep or shallow draught limits; Bernoulli relation for
steady flows; Lagrangian analysis based on Newton’s equations for a single fluid
particle; elementary sinusoidal wave) and rudimentary ‘mathematical’ analysis, which
in fact rests entirely on simple algebraic relations. These rudimentary considerations
are shown to yield useful simple relations for ship bow waves.
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Figure 1. Definition sketch for the bow wave height Zb , the rise of water Zs at the ship stem,
and the distance Tb between the bow wave crest and the ship stem, for a ship of draught D
and waterline entrance angle 2 αE that advances in calm water with speed U .

Specifically, simple expressions that define the height of a ship bow wave, the
distance between the ship stem and the crest of the bow wave, the rise of water at the
stem, and the bow wave profile, explicitly and without calculations, in terms of the
ship speed, draught, and waterline entrance angle, are given. Another result is a simple
criterion that predicts, also directly and without calculations, when a ship in steady
motion cannot generate a steady bow wave. This unsteady-flow criterion predicts
that a ship with a sufficiently fine waterline, specifically with waterline entrance angle
2αE smaller than approximately 25◦, may generate a steady bow wave at any speed.
However, a ship with a fuller waterline, i.e. for 25◦ < 2 αE , can generate a steady bow
wave only if the ship speed is higher than a critical speed, which is defined in terms
of αE by a simple expression. A simple expression for the height of an unsteady ship
bow wave is also given.

An important property of the simple expressions given in this study is that they
provide explicit relationships between main features of a ship bow wave (wave height,
location and profile; flow steadiness or unsteadiness) and basic ‘design parameters’
(ship speed, draught, waterline entrance angle) that define a ship. In other words, these
simple expressions provide direct ‘cause-and-effect’ relations between basic design
parameters and main bow wave characteristics. Such direct relations provide insight
that is valuable for practical applications to ship design, notably at early design stages
(concept and preliminary design).

2. Basic assumptions and relations
The bow wave generated by a ship hull, with a non-bulbous wedge-shaped bow of

draught D and waterline entrance angle 2αE , that advances at constant speed U in
calm water is considered here. The bow flare angle γ is presumed small, and its effect
on the bow wave profile is neglected. Effects of viscosity and surface tension are also
ignored. However, no linearization assumption is made.

A Galilean system of coordinates (X, Y, Z) attached to the advancing ship is
considered. The X- axis lies along the ship path and points toward the bow, and the
Z- axis is vertical and points upward with the mean free surface taken as the plane
Z = 0 , as shown in figure 1. The velocity of the total flow (flow due to the ship +
uniform stream opposing the forward speed of the ship) is (Vx − U , Vy , Vz ) where
(Vx , Vy , Vz ) is the flow due to the ship. The Froude number,

FD = U/
√

gD, (2.1)
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based on the ship draught D is used, instead of the usual Froude number F based on
the ship length (not relevant for the bow wave). Non-dimensional coordinates (x, y, z)
and flow velocities (vx, vy, vz) are defined as

(x, y, z) = (X, Y, Z) g/U 2, (vx, vy, vz) = (Vx, Vy, Vz)/U, (2.2)

where g is the acceleration due to gravity.
The steady-flow Bernoulli relation,

P/ρ + gZ +
[
(Vx − U )2 + V 2

y + V 2
z

]
/2 = P0/ρ + U 2/2,

applied at the free surface, where the pressure P is equal to the atmospheric pressure
P0, and (2.2) defines the magnitude q of the total flow velocity at the free surface
z = ζ (x, y) as

q2 ≡ (vx −1)2 + v2
y + v2

z = 1− 2 ζ. (2.3)

This expression readily yields the well-known upper bound ζ � 1/2 for steady free-
surface flows.

3. Experimental measurements
Further on, the simple expressions obtained in the study are compared to existing

experimental measurements, reported in the literature, for several ship hulls with
wedge-shaped bows, and to our measurements for a rectangular flat plate.

The experimental measurements for ship hulls with wedge-shaped bows consist of
the measurements – identified as Larrarte 10◦, 20◦ or 30◦ hereinafter – for three strut-
like hulls that have rectangular framelines and sharp-ended parabolic waterlines with
entrance angles 2αE = 20◦, 40◦ or 60◦ reported in Larrarte (1994), and measurements
for eight hulls with wedge-shaped bows previously considered in Noblesse et al. (2006).
The latter measurements consist of measurements reported in Standing (1974), Ogilvie
(1973), Waniewski, Brennen & Raichlen (2002) and Karion et al. (2003) for seven
hulls with wedge-shaped bows, and measurements reported in Kajitani et al. (1983)
and McCarthy (1985) for the Wigley hull. These measurements are identified here
as Standing 5◦ or 10◦, Ogilvie 7.5◦ or 15◦, Karion 10◦ or 20◦, Waniewsky 26◦ and
Wigley. The measurements for the Wigley hull were obtained within a cooperative
experiment program under the Resistance Committee of the International Towing
Tank Conference. Only measurements for the Wigley hull held in fixed position (no
sinkage or trim allowed) are considered here. Two sets of measurements, reported by
the Ship Research Institute and the University of Tokyo, are available for the Wigley
hull.

In order to extend the foregoing experimental measurements for ship hulls with
wedge-shaped bows, several series of measurements were made in the towing tank
of the École Centrale de Nantes (France) with a rectangular flat plate (of length
0.782 m) immersed at a draught D and towed at a speed U , yaw angle αE , and heel
angle γ (a rotation of the flat plate about the waterline that is analogous to the flare
angle of a ship hull). In a first series of experiments, the flat plate was immersed at a
draught D =0.3 m and towed at three yaw angles αE = 10◦, 15◦, 20◦ and three speeds
U = 1, 1.5, 2m s−1, which correspond to draught-based Froude numbers FD ≈ 0.58,
0.87, 1.17. Additional measurements were subsequently made with the plate immersed
at a draught D = 0.2m and towed at yaw angles αE = 10◦, 15◦, 20◦, 25◦, 30◦, 45◦,
60◦, 75◦, 90◦, and speeds U =1.25, 1.5, 1.75, 2, 2.25, 2.5 m s−1, which correspond to
FD ≈ 0.89, 1.07, 1.24, 1.43, 1.61, 1.78. For large yaw angles αE , high speeds U were
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Figure 2. A rectangular flat plate, immersed at a draught D = 0.2 m (�) or 0.3 m (�), was
towed at several speeds U , yaw angles αE and heel angles γ . Wave profiles were measured for
yaw angles αE = 10◦, 15◦, 20◦, 25◦, 30◦, 45◦, 60◦, 75◦, 90◦ and draught-based Froude numbers
FD = U/

√
gD =0.58, 0.87, 0.89, 1.07, 1.17, 1.25, 1.43, 1.61, 1.78, as indicated in the figure,

and for heel angles γ = 0◦, 10◦, 15◦. The curve 4.4 tanαE/ cos αE − 1 (−−−−−) separates the
overturning bow wave regime (on the left-hand side of the curve) and the unsteady bow wave
regime (right-hand side). ×, correspond to photographs in figure 6.

not considered because of practical concerns about excessive hydrodynamic loads on
the plate. The yaw angles αE and the Froude numbers FD for which the wave profile
along the plate was measured are indicated in figure 2. Measurements were made
for three heel angles γ = 0◦ (vertical plate), 10◦, 15◦ for every value of D, U and αE .
Thus, only small heel angles γ are considered here. Figures 17, 19 and 21 show that,
for the small heel angles 0◦ � γ � 15◦ considered here, wave profiles are not overly
affected by γ . As illustrated in figure 6, visual observations of free-surface flows about
a rectangular flat plate for the set of yaw angles αE and Froude numbers FD indicated
in figure 2 can be divided into two basic flow regimes, for which an overturning wave
or an unsteady wave is observed. The curve in figure 2, defined by (5.3), separates the
overturning bow wave regime (on the left-hand side of the curve) and the unsteady
bow wave regime (right-hand side).

4. Height of an overturning ship bow wave
The simple expression for the height Zb of a ship bow wave given in Noblesse

et al. (2006), required further on, is now briefly considered. The bow wave height
Zb is the highest water elevation, measured from the horizontal plane Z = 0 of the
undisturbed free surface (figure 1). Simple fundamental theoretical considerations
(dimensional analysis, and rudimentary asymptotic considerations in the thin-ship,
shallow-draught and deep-draught limits) are used with experimental measurements
in Noblesse et al. (2006) to express the non-dimensional bow wave height as

zb ≡ Zbg

U 2
≈ 2.2

1 + FD

tan αE

cos αE

. (4.1)

In the high-Froude-number-thin-ship limit FD → ∞ and αE → 0, (4.1) yields
Zb ∼ 2.2 αE U

√
D/g. This approximation and the high-Froude-number approximation
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Figure 3. Normalized bow wave height (Zbg/U 2) cos αE/ tan αE for (a) ten hull forms, and
(b) a rectangular flat plate towed at several speeds U , yaw angles αE and heel angles γ . The
straight solid line is the approximation (4.1) and the dashed curve corresponds to Ogilvie’s
high-Froude-number approximation.

Zb ∼ 1.6 αE U
√

D/g obtained by Ogilvie (1973), using a relatively complicated analysis
based on matched asymptotic approximations in complementary flow regions, agree
except for the factors 2.2 and 1.6. The function tan αE/cos αE ∼ αE +5α3

E/6 as αE → 0
in (4.1) is consistent with thin-ship theory, and was found in Noblesse et al. (2006) to
yield a slightly better fit to experimental measurements than αE .

The simple expression (4.1) is compared to experimental measurements in figure 3.
This figure depicts the normalized water height (Zbg/U 2) cos αE/ tan αE as a function
of FD/(1 + FD), which varies between 0 and 1 for 0<FD < ∞. Figure 3 shows
experimental measurements for eight hull forms considered in Noblesse et al. (2006),
and additional data for two strut-like hulls reported in Larrarte (1994). The simple
approximation (4.1), identified by a straight solid line, is in good agreement with
most experimental measurements for wedge-shaped ship bows. This approximation is
also in fair agreement with measurements for the Wigley hull, for which an effective
draught D and an effective waterline entrance angle 2αE were used in accordance
with the simple procedure explained in Noblesse et al. (2006). A probable reason for
the greater scatter of the experimental data at low Froude numbers in figure 3 is
that Zb is small as U → 0 (specifically, Zb ∝ U 2) and is divided by U 2. In fact, several
of the low-Froude-number experimental data in figure 3(a) appear to be outliers;
see Noblesse et al. (2006). Figure 3(b) shows that (4.1) is also consistent with our
measurements for a rectangular flat plate. In fact, there are no obvious systematic
differences between figures 3(a) and 3(b). Thus, free-surface flows about a rectangular
flat plate at a yaw angle αE and a hull with wedge-shaped bow and waterline entrance
angle 2αE appear to be very similar, at least for small and moderate values of αE .
This experimental result (and the experimental measurements presented further on
in figures 8 to 10, 12 and 13) justifies the use – adopted in Noblesse et al. (2008)
and here – of a flat plate as a (cheap) substitute to a series of ship models for the
purpose of generating a relatively large experimental data set. The experimental data
in figure 3 are closer to (4.1) than to Ogilvie’s high-Froude-number approximation,
identified by a dashed curve, except in the range 2 <FD where the two approximations
are comparable.
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Figure 4. Curves FD(αE) defined by (5.2) for given values of the total flow velocity qb at the
crest of a ship bow wave.

In summary, the bow wave height Zb of a ship – having a non-bulbous wedge-
shaped bow with a small flare angle – is explicitly defined in terms of the ship speed
U , draught D, and waterline entrance angle 2αE by the simple expression (4.1). This
expression agrees fairly well with experimental measurements both for hulls with
wedge-shaped bows and for a rectangular flat plate.

5. Boundary between unsteady and overturning bow wave regimes
As already noted, two basic types of ship bow wave can be observed: overturning

bow waves and unsteady bow waves. The basic issue of predicting whether a ship –
that advances at constant speed in calm water – generates an unsteady bow wave or
an overturning bow wave is now considered.

The Bernoulli relation (2.3) and equation (4.1) for the height ζ = zb of the free
surface at the crest of a ship bow wave show that the (total) flow velocity qb at a bow
wave crest is approximately given by

q2
b = 1− 2 zb ≈ 1− 4.4

1 + FD

tan αE

cos αE

. (5.1)

This equation yields

FD =
4.4

1− q2
b

tan αE

cos αE

−1. (5.2)

Equation (5.2) defines a family of curves FD(αE) that correspond to specified values of
the flow velocity qb at a bow wave crest. This family of curves is depicted in figure 4
for qb = 0, 0.1, . . . , 0.9, 1. The curves defined by (5.2) and shown in figure 4 intersect
the axis FD = 0 at

αE = sin−1
[√

4.84/
(
1− q2

b

)2
+1 − 2.2/

(
1− q2

b

)]
.
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Figure 5. Potential energy zb (−−−−−) and kinetic energy q2
b/2 = 1/2 − zb(− − −−) at the crest

of a ship bow wave for (a) αE = 10◦ and (b) αE = 20◦. For αE = 10◦, an overturning bow wave
can exist for every value of FD . For αE = 20◦, no steady overturning bow wave can exist for
FD/(1 + FD) < 0.4, i.e. for FD < 0.7.

In particular, we have 2αE ≈ 25◦ for qb = 0, and αE → 0 as qb → 1. In the limit qb → 1,
the curve defined by equation (5.2) becomes the vertical axis αE = 0 with 0 < FD , as
indicated in figure 4.

The region to the right of the curve qb = 0 in figure 4 corresponds to negative
values of q2

b , and to bow wave heights 1/2 < zb that exceed the upper bound ζ � 1/2
permitted by the Bernoulli relation (2.3) for steady free-surface flows. Thus, no steady
bow wave can exist in the region to the right of the curve qb = 0 in figure 4. This
curve is defined by (5.2) with qb = 0, i.e.

FD ≡ U/
√

g D = 4.4 tanαE/ cos αE − 1. (5.3)

The boundary defined by (5.3) separates two distinct flow regimes: the unsteady bow
wave regime and the overturning bow wave regime. In fact, the Bernoulli constraint
ζ � 1/2 for steady free-surface flows precludes steady bow waves in the ‘unsteady
region’ to the right of the curve qb = 0 in figure 4, but does not imply steady flow in
the region to the left of the curve qb = 0. Thus, unsteady flow is possible to the left of
the curve qb = 0, but steady flow is not possible to the right of the curve qb =0.

Equation (5.1) yields zb → 0 and qb → 1 as FD → ∞. Thus, the potential energy zb

is null and the kinetic energy q2
b/2 is equal to 1/2 in this high-Froude-number limit.

Equation (5.1) also yields zb → 1/2 and q2
b → 0 along the unsteady flow boundary

(5.3). Equation (5.1) shows that the potential energy zb and the kinetic energy q2
b/2 at

the crest of a ship bow wave are linear functions of FD/(1 + FD). These functions are
depicted in figure 5 for αE = 10◦ and αE = 20◦. For αE = 10◦ (figure 5a), the kinetic
energy q2

b/2 is positive, and an overturning bow wave can exist, for every value of
the Froude number FD . However, for αE = 20◦ (figure 5b), qb vanishes for FD ≈ 0.7,
i.e. for FD/(1 + FD) ≈ 0.4, and no steady flow can exist for FD < 0.7.

Figure 6 shows six photographs of waves due to a rectangular flat plate towed at a
Froude number FD ≈ 1.25 (draught D = 0.2 m and speed U = 1.75m s−1), a heel angle
γ =10◦, and a series of six yaw angles αE . The values of αE and FD that correspond
to the photographs in figure 6 are identified by the symbol × in figure 2. The three
photographs on the left-hand side of figure 6 correspond to values of αE and FD

located on the left-hand side (the overturning bow wave side) of the curve shown in
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Figure 6. Bow waves due to a rectangular flat plate towed at a Froude number
FD = U/

√
gD ≈ 1.25 (draught D = 0.2 m and speed U = 1.75 m s−1), a heel angle γ = 10◦,

and six yaw angles αE . The values of FD and αE that correspond to the six photographs are
indicated by × in figure 2.

figure 2, i.e. the curve qb = 0 in figure 4, and defined by (5.3). The photograph for
αE =25◦ in figure 6 corresponds to a point located on the curve in figure 2, and the
other two photographs in the right-hand column correspond to points located on the
right-hand side (the unsteady bow wave side) of this boundary curve.

The left-hand column of figure 6 shows overturning thin sheets of water (not
readily apparent for αE = 10◦ because the wave is fairly small). These thin sheets
appear to be smooth and steady, until the overturning sheets hit the main body of
water and a (turbulent and unsteady) splash is formed. This experimental observation
is consistent with the location of the points related to these three photographs on the
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left of the boundary curve in figure 2. The overturning wave for αE = 10◦ appears to
be quite steady, smooth and stable. The photographs of the waves for αE = 15◦ and
αE = 20◦ suggest some degree of instability near the outer edges of the overturning
thin sheets of water. The photograph for αE =25◦ is an overturning wave that
appears to be less stable than the overturning waves shown in the left-hand column
of figure 6. The photograph for αE = 30◦, which corresponds to a point located
slightly to the right of the boundary curve defined by (5.3) in figure 2, suggests a
partly overturning, but highly unsteady, wave. Finally, no overturning is apparent
in the highly unsteady and turbulent wave for αE = 45◦, which corresponds to a
point located well inside the ‘unsteady region’ on the right of the boundary curve in
figure 2.

Thus, figure 6 documents a gradual transition from a highly stable overturning thin
sheet of water for αE = 10◦ to a highly unsteady and turbulent wave for αE =45◦, and
a gradual decrease in flow unsteadiness as the boundary curve in figure 2 is crossed
from right to left. Furthermore, the three photographs in the left-hand column of
figure 6 suggest that flow unsteadiness gradually moves upward along the overturning
thin sheet of water, until it reaches the plate in the top right corner of figure 6.
Thus, the boundary curve defined by (5.3) appears to correspond to the limiting
case when flow unsteadiness occurs at the plate (or ship hull), rather than at some
distance away from the plate for points located on the left side of the curve in
figure 2.

In summary, a ship with a sufficiently fine waterline, specifically with waterline
entrance angle 2αE smaller than approximately 25◦, may generate an overturning
bow wave at any speed. However, a ship with a fuller waterline, for 25◦ < 2αE ,
can only generate an overturning bow wave if the ship speed is higher than the
critical speed defined by (5.3). This simple expression explicitly defines the boundary
between the unsteady and overturning bow wave regimes in terms of the ship speed
U , draught D, and waterline entrance angle 2αE . The boundary curve that separates
the unsteady and overturning bow wave regimes corresponds to the special case for
which the flow velocity qb at the crest of a ship bow wave is null. This property
provides a simple physical interpretation of the transition between overturning and
unsteady bow waves. A water particle at the crest of a wave (or a ball at the top
of a mound) without momentum is not stable. In this case, a ship bow wave can
be expected to be highly unsteady, and to move back and forth in the vicinity of
the ship bow. The curves that correspond to increasingly higher values of the flow
velocity qb at a bow wave crest can be presumed to correspond to increasingly
more stable and steady overturning bow waves. Thus, figure 4 defines regions where
ship bow waves can be expected to be unsteady, or increasingly more steady and
stable.

The definition of the ‘steady overturning bow wave regime’ and the ‘unsteady
bow wave regime’ that is used here is based on a simple theoretical argument (flow
velocity at the bow wave crest given by the Bernoulli relation). This definition is a
‘theoretical’ definition, rather than an ‘experimental’ definition based on observed flow
characteristics. Nevertheless, our flow observations, notably those reported in figure 6,
for a rectangular flat plate towed at several speeds and yaw angles are consistent
with figure 4. Overturning bow waves in the (αE, FD) region that is very close to
the unsteady boundary curve qb =0 in figure 4, i.e. for small wave crest velocity qb,
exhibit considerable unsteadiness. On the contrary, overturning bow waves observed
in the (αE, FD) region well to the left of the curve qb = 0 are stable and steady thin
sheets of water (until the plunging wave hits the main body of water).
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Figure 7. Normalized bow wave heights Zbg/U 2 (a) and (b) (1 + FD)Zb g/U 2 as functions of
the waterline half entrance angle, or yaw angle, αE . The experimental measurements shown in
figure 7 include data for eleven hull forms and flat-plate data. The data identified by ◦ or +
correspond to values of αE and FD in the unsteady or steady flow regions on the right or left
sides, respectively, of the boundary curve qb = 0 in figure 4.

6. Height of an unsteady ship bow wave
A ship with a large waterline entrance angle αE (specifically, for 25◦ < 2 αE) was

shown in the previous section to generate an unsteady bow wave, except when FD is
sufficiently large. The height Zb of an unsteady ship bow wave is now considered.

Figures 7(a) and 7(b) show the bow wave heights Zb g/U 2 and (1 + FD)Zbg/U 2,
respectively, as functions of the waterline half entrance angle, or yaw angle, αE . The
experimental measurements shown in figure 7 include all the data (flat-plate data for
yaw angles αE =10◦, 15◦, 20◦, and data for ten hull forms) considered in figure 3.
In addition, figure 7 shows data for the Larrarte 30◦ strut-like hull, and flat-plate
data for yaw angles αE = 25◦, 30◦, 45◦, 60◦, 75◦, 90◦. A relatively large number of
experimental measurements is then considered. The data are divided into two groups,
identified by ◦ or +, which correspond to values of αE and FD in the unsteady or
‘steady’ (overturning wave) flow regions on the right or left sides, respectively, of
the (zero wave crest velocity) boundary curve qb =0 defined by (5.3) and shown in
figure 4. Thus, this division into ‘steady’ and ‘unsteady’ data is not based on flow
observations, but strictly upon the location of αE and FD to the left or right sides of
the boundary curve qb = 0 shown in figure 4.

Figure 7(a) shows that the ‘steady-flow’ data lie below the horizontal line
Zb g/U 2 = 1/2, in agreement with the Bernoulli constraint Zb g/U 2 � 1/2 for steady
free-surface flows. Figure 7(a) also shows that the ‘unsteady-flow’ data are distributed,
more or less evenly, above and below the horizontal line Zb g/U 2 = 1/2. Thus, the
height Zb of an unsteady ship bow wave is approximately equal to the upper bound

zb ≡ Zbg/U 2 = 1/2, (6.1)

allowed by the Bernoulli relation for steady free-surface flows. Figure 7(b) shows that
the ‘steady-flow’ data are distributed, fairly evenly, around the curve 2.2 tan αE/ cos αE ,
in accordance with the approximation (4.1) and figure 3. Figure 7(b) also shows that
the ‘unsteady-flow’ data are located below the curve 2.2 tan αE/ cosαE . Thus, (4.1)
and (6.1) provide reasonable approximations for the height Zb of a ship bow wave
in the overturning and unsteady flow regimes. Furthermore, figure 7 shows that
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Figure 8. Normalized distance (1 + FD) Tbg/U 2 between a ship stem and bow wave crest for
six hull forms and a flat plate. The curve is the approximation 1.1 cos7 αE related to (7.1). The
points in (b) are the centroids of the scattered experimental measurements shown in (a).

these expressions also provide upper bounds for Zb in the unsteady and overturning
regimes, respectively.

In summary, (4.1) and (6.1) and figure 7 show that the height Zb of the bow wave
of a ship with a non-bulbous wedge-shaped bow is approximately given by

zb ≡ Zbg

U 2
≈ min

(
2.2

1 + FD

tan αE

cos αE

,
1

2

)
. (6.2)

Figure 7 shows that this simple expression is in reasonable agreement with
experimental measurements both for hulls with wedge-shaped bows and for a flat
plate. Equation (6.2) directly defines the height Zb of a ship bow wave, which may
be overturning or unsteady, in terms of the ship speed U , draught D, and waterline
entrance angle 2αE .

7. Distance between a ship stem and bow wave crest
The distance Tb (measured along the ship hull surface) between a ship stem

and bow wave crest is now considered. The fundamental theoretical considerations
(dimensional analysis and rudimentary asymptotic considerations in the shallow-
draught and deep-draught limits) used in Noblesse et al. (2006) show that the function
t∗
b ≡ (1 + FD)Tb g/U 2 can be expected to be independent of the ship draught D and
speed U . Thus, t∗

b is presumed to depend only on the waterline entrance angle αE .
Furthermore, experimental observations and symmetry considerations suggest that
the function t∗

b (αE) may be assumed to vanish in the limit αE → 90◦.
Figure 8(a) shows the normalized distance t∗

b between a ship stem and bow
wave crest as a function of αE for six hull forms and a rectangular flat plate.
Only experimental measurements in the ‘steady’ flow (overturning wave) side of the
boundary curve defined by (5.3) and identified as the (zero wave crest velocity) curve
qb =0 in figure 4, are considered in figure 8. The points in figure 8(b) are the centroids
of the scattered experimental measurements shown in figure 8(a). Figure 8 shows that
the curve 1.1 cos7αE provides a reasonable fit to the experimental measurements. This
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curve corresponds to the approximation

tb ≡ Tb g/U 2 ≈ 1.1(cos7 αE)/(1 +FD). (7.1)

This simple approximation is also depicted in figure 9, where the normalized distance
(Tbg/U 2)/ cos7 αE is shown as a function of FD/(1 + FD). Figures 9(a) and 9(b) show
experimental measurements for six hull forms and a flat plate, respectively. In the
high-Froude-number-thin-ship limit FD → ∞ and αE → 0, (7.1) yields Tb ∼ 1.1 U

√
D/g.

In summary, the distance Tb between the stem and the bow wave crest of a ship with
a non-bulbous wedge-shaped bow is explicitly defined in terms of the ship speed U ,
draught D, and waterline entrance angle 2αE by (7.1). This expression is in reasonable
agreement with experimental data both for hulls with wedge-shaped bows and for
a flat plate. For small waterline entrance angle αE , (7.1) agrees with the expression
Tb g/U 2 ≈ 1.1/(1 + FD) given in Noblesse et al. (2006).

8. Rise of water at a ship stem
The simple expression for the rise Zs of water at a ship stem given in Noblesse

et al. (2008) is required further on, and thus is now briefly considered. The water
height Zs is measured from the horizontal plane Z = 0 of the undisturbed free
surface, as shown in figure 1. The water height Zs at a ship stem is considered in
Noblesse et al. (2008) using two methods: thin-ship theory (a fully analytical approach)
and a theoretical–experimental approach based on both fundamental theoretical
considerations (dimensional analysis, and rudimentary asymptotic considerations in
the shallow-draught and deep-draught limits) and experimental measurements, in a
manner similar to that used for the bow wave height Zb in Noblesse et al. (2006).
Both the theoretical–experimental method and thin-ship theory yield simple relations.
Furthermore, these relations are in close agreement, except for FD � 1.

Specifically, the thin-ship analysis considered in Noblesse et al. (2008) yields

zs ≡ Zs g

U 2
≈ 2

π

tan αE

cos αE

Es(FD) (8.1)
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with

Es(FD) ≡
∫ π/2

0

dt
[
1− exp (−(sin2 t)/F 2

D)
]
/ sin t.

This integral can be approximated as

Es ≈ 1

1+F 2
D

+
2/3(

1+F 2
D

)2
+

19/45(
1+F 2

D

)3
+

26/105(
1+F 2

D

)4
+

601/4725(
1+F 2

D

)5
+

1502/31185(
1+F 2

D

)6

+ 4.16 exp(−13FD − 0.26). (8.2)

The series in (8.2) is a (modified) high-Froude-number asymptotic expansion. This
series is nearly identical to the integral Es for 0.3 � FD . The last term in expression
(8.2) is a low-Froude-number correction. Equation (8.2) closely approximates the
function Es , except for FD � 1, and can then be used in practice (Noblesse et al.
2008).

In the high-Froude-number-thin-ship limit FD → ∞ and αE → 0, (8.1) and (8.2)
yield Zs ∼ 2 αED/π. This approximation and the high-Froude-number approximation
Zs ∼ αED/π obtained by Fontaine et al. (2000), using matched complementary
asymptotic approximations in a manner similar to that used by Ogilvie (1973), are
in agreement except for a factor 2. The function tan αE/ cos αE in (8.1) is consistent
with thin-ship theory, and is shown in Noblesse et al. (2008) to fit experimental
measurements slightly better than αE .

The simple expression (8.1) is compared to experimental measurements in figure 10.
This figure depicts the normalized water height (Zsg/U 2) cos αE / tan αE as a function
of F 2

D/(1 + F 2
D), which varies between 0 and 1 for 0< FD < ∞. Figure 10(a) shows

experimental measurements, reported in Kajitani et al. (1983) and Larrarte (1994),
for the Wigley hull and two strut-like hulls. Figure 10(b) shows measurements
for a rectangular flat plate. There are no obvious systematic differences between
figures 10(a) and 10(b). This experimental result, already observed in figures 3, 8
and 9, further supports the use – adopted in Noblesse et al. (2008) and here – of a
flat plate (as a cheap substitute to a series of ship models) to generate a relatively
large set of experimental measurements. Equation (8.1), identified by a solid line,
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is in good agreement with the measurements considered in figure 10. In fact, these
measurements are fairly evenly distributed around the thin-ship approximation (8.1).
Fontaine’s high-Froude-number approximation, shown as a dashed curve, lies below
most measurements.

In summary, the rise Zs of water at the stem of a ship with a non-bulbous wedge-
shaped bow is explicitly defined in terms of the ship speed U , draught D, and waterline
entrance angle 2αE by the simple expressions (8.1) and (8.2). These expressions agree
fairly well with experimental measurements both for hulls with wedge-shaped bows
and for a rectangular flat plate.

9. Bow wavefront
The height Zb of a ship bow wave, the distance Tb between a ship stem and the

bow wave crest, and the water rise Zs at the ship stem have already been considered
in §§ 4 and 6–8. The front of a ship bow wave, i.e. the portion of the wave located
between the ship stem and the wave crest, is now considered further.

The magnitude qs of the flow velocity at a ship stem is defined, via the Bernoulli
relation (2.3), in terms of the elevation zs of the free surface at the stem as

qs =
√

1 − 2 zs. (9.1)

Let t = T g/U 2 stand for the non-dimensional distance, measured from the ship stem,
along a horizontal axis that is tangent to the mean ship waterline at the ship stem,
and points toward the ship stern. Thus, the free surface intersects the ship stem at
t = 0 and z = zs . Furthermore, define the non-dimensional time θ = Θ g/U , and let β

stand for the angle between the horizontal mean free-surface plane and the (total)
flow velocity at the ship stem. The components, along the horizontal t-axis and the
vertical z-axis, of the flow velocity at the stem are then given by qs cosβ and qs sinβ ,
respectively.

A simple approximation for the front of a ship bow wave profile can be obtained
by assuming that a water particle that passes the stem (t = 0, z = zs) follows a path
determined by Newton’s equations d2t/dθ2 = 0 and d2z/dθ2 = − 1. This elementary
Lagrangian analysis, which ignores interactions among water particles, shows that
the path of a water particle is defined by

t = θ qs cos β, z = zs + θ qs sin β − θ2/2.

Here, a water particle is assumed to be located at the ship stem (t = 0, z = zs) at time
θ =0. The foregoing parametric equations yield

z = zs +
t

q2
s cos2 β

(
q2

s sinβ cos β − t

2

)
. (9.2)

Thus, we have z = zs for t = 0 and for t =2 q2
s sinβ cos β . Equation (9.2) shows that

the highest value of z is reached at t = tb = q2
s sinβ cos β and is given by zb = zs +

(qs sinβ)2/2. It follows that we have qs sinβ =
√

2(zb − zs). This relation and (9.1)
yield qs cos β =

√
1 − 2 zb and

tb ≡ Tb g/U 2 = τb

√
1− hs

b. (9.3)

In this expression, which provides an alternative to (7.1), τb is defined as

τb =
√

2 zb(1− 2 zb), (9.4)
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and hs
b ≡ zs/zb is defined by (6.2) and (8.1) as

hs
b ≡ Zs

Zb

≈ min

(
1+FD

3.5
Es(FD), 1

)
, (9.5)

where the function Es(FD) is given by (8.2). The upper bound 1 in (9.5), required in
(9.3), is shown in Noblesse et al. (2008) to be consistent with experimental observations
and (6.2) and (8.1), except at very low Froude numbers FD . Equation (9.3) yields tb � τb,
tb = τb if zs =0, and tb ≈ τb if hs

b � 1. Equation (9.2), the relations q2
s sinβ cosβ = tb

and q2
s cos2β =1− 2 zb, and (9.3) and (9.4), yield

ζ/zb = hs
b + (1 − hs

b)(2 − t/tb)t/tb for 0 � t � tb. (9.6)

Here, ζ is used instead of z to emphasize that (9.6) defines the location z = ζ of the
free surface.

The change of variable t = τ + tb, which places the origin τ = 0 at the bow wave
crest, in (9.6) yields

ζ/zb = 1− τ 2/τ 2
b . (9.7)

Equations (9.7) and (9.4) define a family of parabolic ship bow waves that is entirely
defined in terms of the height zb of the bow wave. This simple one-parameter analytical
family of bow waves is depicted for zb = 0.05, 0.1, 0.15, 0.2, 0.25 (figure 11a) and for
zb = 0.25, 0.3, 0.35, 0.4, 0.45, 0.49 (figure 11b). In the limit zb =0.5, (9.4) predicts that
the width of the bow wave vanishes, and the wave (9.7) becomes a vertical wall of
water. Thus, the bow wave (9.7) becomes a (clearly unstable) vertical wall as the wave
height zb approaches the upper bound zb =0.5 allowed by the Bernoulli relation for
steady flows. This property provides further insight into the unsteady-flow boundary
(5.3), already shown to correspond to the special case when the flow velocity qb at
the bow wave crest is null.

In summary, (9.6), (6.2), (9.5), (9.4) and (9.3) define the front 0 � t � tb of the bow
wave of a ship with a non-bulbous wedge-shaped bow directly in terms of the ship
speed U , draught D, and waterline entrance angle 2αE . For an unsteady bow wave,
we have zb = 1/2 and the wavefront defined by (9.6) is a vertical wall tb = 0 with
zs � ζ � 1/2. These simple expressions for the front of a ship bow wave are compared
to experimental measurements in § 11, where the profile of a ship bow wave beyond
the bow wave crest, i.e. for tb < t , is also considered.
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10. Comparison of theoretical expressions to measurements
Expressions (9.5) and (8.2) for the ratio Zs/Zb of the rise of water Zs at a ship stem

to the bow wave height Zb, and the two alternative expressions (7.1) or (9.3)–(9.5)
with (6.2) for the distance Tb between the stem and the bow wave crest of a ship, are
now compared to experimental measurements.

Equation (9.5), with (8.2), is compared to experimental measurements for a
rectangular flat plate in figure 12, where the ratio Zs/Zb is depicted as a function
of F 2

D/(1+F 2
D). The experimental measurements are distributed fairly evenly above

and below the theoretical curve defined by the simple expression (9.5). The scatter of
the experimental measurements in figure 12 is probably due to the compounding of
experimental uncertainties associated with two measurements (Zs and Zb) and to the
fact that Zb and (especially) Zs are relatively small for the yaw angles 10◦ � αE � 20◦

considered in figure 12.
Figure 13 depicts τb ≡ (Tb g/U 2)/

√
1 − Zs/Zb as a function of zb ≡ Zb g/U 2. The

circle in this figure corresponds to (9.4). This simple expression is compared to
experimental measurements for three hulls with wedge-shaped bows (figure 13a) and
a rectangular flat plate (figure 13b). The scatter of the experimental measurements in
figure 13 is probably due to the compounding of experimental uncertainties associated
with three measurements (Tb, Zb and Zs) and the fact that experimental uncertainties
are larger for Tb than for Zb. The circle in figure 13 fits the experimental measurements
reasonably well for αE = 20◦ and αE =15◦, but not so well for αE = 10◦.

The two alternative expressions for the distance Tb between the stem and the bow
wave crest of a ship given by (7.1) and by (9.3)–(9.5) with (6.2) and (8.2) are compared
in figure 14. Specifically, figures 14(a) and 14(b) depict (Tb g/U 2)/

√
1 − Zs/Zb as a

function of Zb g/U 2, or (Tb g/U 2)/ cos7 αE as a function of FD/(1 + FD), respectively.
In figure 14(a), the circle corresponds to (9.4), and the three curves identified as
αE =10◦, 15◦, 20◦ correspond to (7.1). In figure 14(b), the straight line corresponds to
(7.1), and the three curves identified as αE = 10◦, 15◦, 20◦ correspond to (9.3)–(9.5),
(6.2), (8.2). Experimental measurements for a rectangular flat plate at yaw angles
αE =10◦, 15◦, 20◦ are also shown in figure 14. The measurements for αE = 10◦ are
in better agreement with (7.1) than with (9.3)–(9.5), (6.2), (8.2). The reverse appears
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Figure 13. Comparison of the circle defined by (9.3) and (9.4) to experimental measurements
for (a) three hulls with wedge-shaped bows and (b) a rectangular flat plate.
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correspond to (7.1) or (9.3)–(9.5), (6.2), (8.2) in (a) and (b), respectively.

to hold for αE = 20◦ and αE =15◦, although this conclusion can only be tentative in
view of the scatter of the experimental data.

In summary, figures 12 to 14 show that expressions (9.5) and (8.2) for the ratio
Zs/Zb of the rise Zs of water at a ship stem to the bow wave height Zb, and the
alternative expressions for the distance Tb between a ship stem and bow wave crest
given by (7.1) or (9.3)–(9.5) and (6.2) are in reasonable agreement with experimental
measurements.

11. Ship bow wave profile
The front of the bow wave is entirely determined – via a highly-simplified

Lagrangian analysis (given in § 9) that ignores interactions among water particles
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– in terms of the water rise zs at the ship stem and the related flow velocity qs given
by the Bernoulli relation (9.1). The thin-ship analysis of the water rise zs at a ship stem
given in Noblesse et al. (2008) shows that the water elevation zs stems from integration
– over the ship hull surface – of the local-flow component in the expression for the
Green function that satisfies the Michell linearized free-surface boundary condition.
Thus, the water rise zs at a ship stem and the bow wavefront correspond to a ‘near-
field flow effect’, which is closely related to the ship-hull boundary condition, and in
fact accounts for the obstruction of the ship hull in the uniform current (−U, 0, 0)
that opposes the ship speed.

This ‘physical interpretation’ of the elementary analysis of the front of a ship
bow wave shows that the parabolic bow wavefront is strongly influenced by the
boundary condition at the ship hull, and thus corresponds to a ‘nearfield wave’. In
fact, the front of a ship bow wave is similar to the front of a wave generated by a
wavemaker. However, the flow beyond the crest of a wave – generated by a ship bow
or a wavemaker in a tank – is not as strongly affected by the near-field boundary
condition at the ship hull or at the wavemaker, and indeed essentially corresponds to a
‘free wave’, i.e. a plane progressive wave. Specifically, a ship bow wave aft of the wave
crest can be expected to be reasonably approximated by an elementary plane wave
alongside the hull, with wavelength 2π(cos2 αE)U 2/g, i.e. ζ/zb = cos[(t − tb)/ cos2 αE].

This sinusoidal approximation and the parabolic approximation (9.6) yield

ζ/zb = hs
b +

(
1 − hs

b

)
(2 − t/tb)t/tb for 0 � t � tb,

ζ/zb = cos[(t − tb)/ cos2αE] for tb � t,

}
(11.1a)

where the alternative expressions

tb =
√

2 zb(1 − 2 zb)
(
1 − hs

b

)
≡ tb(zb),

tb = 1.1 (cos7αE)/(1+FD) ≡ tb(FD),

}
(11.1b)

for the distance tb between the ship stem and the bow wave crest may be used, and
the bow wave height zb and the ratio hs

b = zs/zb of the water rise zs at the ship stem
over the bow wave height are defined by (6.2) and (9.5) as

zb ≡ Zbg

U 2
≈ min

(
2.2

1+FD

tan αE

cos αE

,
1

2

)
, (11.1c)

hs
b ≡ Zs

Zb

≈ min

(
1+FD

3.5
Es(FD), 1

)
, (11.1d)

with the function Es(FD) given by (8.2). The simple analytical expressions (11.1)
directly define a ship bow wave profile in terms of the ship speed U , draught D, and
waterline entrance angle 2αE . The notation tb(zb) and tb(FD) in (11.1c) is used as a
convenient way of identifying the two sets of curves in figures 15–21.

In summary, (11.1) represents a ship bow wave in terms of two complementary
pieces: a (nonlinear) parabolic wavefront (between a ship stem and bow wave crest),
influenced by near-field effects (specifically, the boundary condition at the ship hull),
and a (linear) sinusoidal elementary ‘free’ wave. Equations (11.1) and (8.2) provide a
simple analytical approximation that directly defines the bow wave profile of a ship
with a non-bulbous wedge-shaped bow in terms of the ship speed U , draught D, and
waterline-entrance angle 2αE .
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Figure 15. Theoretical bow wave profiles (11.1) and experimental measurements reported in
Kajitani et al. (1983) for the Wigley hull. The draught-based Froude numbers FD considered
in this figure correspond to length-based Froude numbers equal to 0.250, 0.267, 0.289, 0.316,
0.354 and 0.408.

12. Comparison of analytical and experimental bow wave profiles
These expressions are compared to experimental measurements in figures 15–21

for the Wigley hull, the series of three strut-like hulls with sharp-ended parabolic
waterlines and entrance angles 2 αE = 20◦, 40◦, 60◦ considered by Larrarte (1994), and
a rectangular flat plate towed at yaw angles αE =10◦, 20◦, 30◦. Figure 15 for the
Wigley hull shows two sets of experimental measurements, obtained at the University
of Tokyo (UT) and the Ship Research Institute (SRI) in Japan. Figures 17, 19 and
21 show our measurements for a flat plate towed at heel angles γ =0◦, 10◦ and 15◦,
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Figure 16. Theoretical bow wave profiles (11.1) and experimental measurements reported in
Larrarte (1994) for a strut-like hull with entrance angle 2αE = 20◦. The draught-based Froude
numbers FD considered in this figure correspond to length-based Froude numbers equal to
0.203, 0.250, 0.297, 0.344, 0.391 and 0.417.

except for figure 21 for which no measurements were made for γ = 15◦ (and for the
highest speed FD = 1.784, due to practical concerns about excessive hydrodynamic
loads). Figures 17, 19 and 21 show that the wave profile is not overly affected by the
heel angle γ for small values of γ , as assumed in the present study. The theoretical
bow wave profiles in figures 15, 16, 18 and 20 are determined using the effective
waterline entrance angle αE defined in Noblesse et al. (2006); similarly, the effective
draught defined in Noblesse et al. (2006) is used for the theoretical wave profile of
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Figure 17. Theoretical bow wave profiles (11.1) and experimental measurements for a flat
plate towed at a yaw angle αE = 10◦ and heel angles γ = 0◦, 10◦, 15◦. The draught-based
Froude numbers FD considered in this figure correspond to length-based Froude numbers
equal to 0.451, 0.541, 0.632, 0.722, 0.812 and 0.902.

the Wigley hull in figure 15. However, the actual draught D is used for the horizontal
and vertical coordinates X/D and Z/D in figures 15, 16, 18 and 20.

Experimental and theoretical bow wave profiles are compared for six values of the
draught-based Froude number FD for the Wigley hull (figure 15), the three Lararrte
struts (figures 16, 18, 20), and the flat plate (figures 17, 19, 21). Figures 15 to 17
compare theoretical and experimental wave profiles for the Wigley hull, for which the
waterline half-entrance angle αE is approximately equal to 10◦, the Lararrte 10◦ strut,
and a flat plate towed at a yaw angle αE = 10◦. Thus, these three figures correspond to
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Figure 18. Theoretical bow wave profiles (11.1) and experimental measurements reported in
Larrarte (1994) for a strut-like hull with entrance angle 2αE = 40◦.

the same waterline half-entrance angle αE ≈ 10◦. Figures 18, 19 and 20, 21 correspond
to αE = 20◦ and αE =30◦, respectively.

Differences between the theoretical wave profiles associated with the alternative
expressions tb(zb) and tb(FD) given by (11.1b) depend on both the waterline half-
entrance angle αE and the Froude number FD . These differences are relatively
insignificant, and in fact are fairly small in figures 15, 17 and 19. The theoretical
and experimental wave profiles in figures 15 to 17 are in reasonable agreement on the
whole, especially at lower Froude numbers FD . More precisely, the wavelength of the
‘free-wave portion’ of the theoretical profile (11.1a) becomes too large, in comparison
to experimental measurements, for large values of FD . These discrepancies appear to
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Figure 19. Theoretical bow wave profiles (11.1) and experimental measurements for a flat
plate towed at a yaw angle αE =20◦ and heel angles γ = 0◦, 10◦, 15◦.

be more pronounced in figures 15 and 16 than in figure 17. A possible explanation for
these discrepancies is that the curvature of the Wigley hull and the Lararrte strut can
be expected to have increasingly greater effects as the speed U and the wavelength
2π(cos2αE)U 2/g increase. The amplitude of the bow wave is fairly well predicted on
the whole, especially for the Wigley hull (figure 15) and the Lararrte strut (figure 16).
Agreement between theoretical and experimental wave profiles does not appear to be
worse in figures 18 and 19, which correspond to αE = 20◦, than in figures 15 to 17
for αE = 10◦. In fact, theoretical profiles are in better agreement with experimental
measurements for the flat plate held at a yaw angle αE = 20◦ (figure 19) than at
the smaller angle αE = 10◦ (figure 17). Similarly, theoretical profiles, especially the
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Figure 20. Theoretical bow wave profiles (11.1) and experimental measurements reported in
Larrarte (1994) for a strut-like hull with entrance angle 2αE = 60◦.

tb(zb) profiles, agree fairly well with experimental measurements in figure 20, which
corresponds to the Lararrte strut with a large waterline entrance angle 2 αE = 60◦

(for which the bow wave is unsteady). However, agreement between theoretical and
experimental wave profiles is poor (except for the wave amplitude, which is fairly well
predicted) in figure 21 for the flat plate towed at a yaw angle αE = 30◦. Figures 20 and
21 show that free-surface flows about a flat plate towed at a yaw angle αE and a ship
hull with a wedge-like bow and waterline entrance angle 2αE differ significantly for
large values of αE , as one might expect (and in accordance with our flow observations).

In summary, figures 15 to 20 show that, in spite of its great simplicity, the
analytical approximation to a ship bow wave profile given by (11.1) and (8.2)
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Figure 21. Theoretical bow wave profiles (11.1) and experimental measurements for a flat
plate towed at a yaw angle αE = 30◦ and heel angles γ = 0◦ and 10◦.

is in reasonable agreement with experimental measurements. In particular, this
approximation correctly predicts the variations of a ship bow wave profile associated
with variations of the ship speed U , draught D, and waterline entrance angle 2αE ; a
property that is of considerable importance for practical applications to ship design.

13. Conclusion
In summary, the bow wave generated by a ship – that has a non-bulbous wedge-

shaped bow with small flare angle – in steady motion has been considered using
experimental measurements and elementary fundamental considerations (dimensional
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analysis, rudimentary asymptotic considerations in the thin-ship, shallow-draught
and deep-draught limits, thin-ship theory, elementary Lagrangian analysis based on
Newton’s equations for a single water particle, and elementary wave). This elementary
analysis has led to a series of simple relations that define essential features of a ship
bow wave, directly and without calculations, in terms of the ship speed U , draught
D, and waterline entrance angle 2αE .

Specifically, a simple criterion that determines whether a ship in steady motion
can be expected to generate a ‘steady’ overturning bow wave or an unsteady wave
has been given. Simple expressions for the height of a ship bow wave, the distance
between the stem and the bow wave crest of a ship, the rise of water at a ship
stem, and the shape of the bow wave (bow wave profile) have also been given. In
spite of their remarkable simplicity, these relations are in reasonable agreement with
experimental measurements and observations both for several hulls with non-bulbous
wedge-shaped bows and for a rectangular flat plate towed at a yaw angle αE .

The simple expressions given in the study provide explicit relationships between
main characteristics of a ship bow wave (wave height, location and profile; flow
steadiness or unsteadiness) and basic ‘design parameters’ (ship speed, draught,
waterline entrance angle). In other words, these expressions provide direct ‘cause-and-
effect’ relations between basic design parameters and essential bow wave features.
Such direct relations provide valuable insight, and are sufficiently accurate to be
useful for practical applications to ship design, notably at early design stages (concept
and preliminary design).

The work of the first author was sponsored by NSWCCD’s ILIR research program
and the Naval Surface Warfare Center Carderock Division (NSWCCD) in support
of the Naval Sea Systems Command’s Joint High Speed Sealift (JHSS) program. Mr
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